Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
2.
Adv Sci (Weinh) ; 10(35): e2207736, 2023 Dec.
Article En | MEDLINE | ID: mdl-37875397

Candida albicans (C. albicans), a ubiquitous polymorphic fungus in humans, causes different types of candidiasis, including oral candidiasis (OC) and vulvovaginal candidiasis (VVC), which are physically and mentally concerning and financially costly. Thus, developing alternative antifungals that prevent drug resistance and induce immunity to eliminate Candida biofilms is crucial. Herein, a novel membrane-targeted aggregation-induced emission (AIE) photosensitizer (PS), TBTCP-QY, is developed for highly efficient photodynamic therapy (PDT) of candidiasis. TBTCP-QY has a high molar absorption coefficient and an excellent ability to generate 1 O2 and •OH, entering the interior of biofilms due to its high permeability. Furthermore, TBTCP-QY can efficiently inhibit biofilm formation by suppressing the expression of genes related to the adhesion (ALS3, EAP1, and HWP1), invasion (SAP1 and SAP2), and drug resistance (MDR1) of C. albicans, which is also advantageous for eliminating potential fungal resistance to treat clinical infectious diseases. TBTCP-QY-mediated PDT efficiently targets OC and VVC in vivo in a mouse model, induces immune response, relieves inflammation, and accelerates the healing of mucosal defects to combat infections caused by clinically isolated fluconazole-resistant strains. Moreover, TBTCP-QY demonstrates excellent biocompatibility, suggesting its potential applications in the clinical treatment of OC and VVC.


Candidiasis, Vulvovaginal , Candidiasis , Mice , Humans , Female , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidiasis/drug therapy , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Candida albicans/genetics , Drug Resistance , Immunity
3.
J Virol ; 97(5): e0036923, 2023 05 31.
Article En | MEDLINE | ID: mdl-37162335

Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.


Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cell Line , Foot-and-Mouth Disease Virus/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines , RNA/metabolism , TOR Serine-Threonine Kinases/metabolism , Virus Replication , Cricetinae
4.
Article En | MEDLINE | ID: mdl-36674029

PM2.5 has an aerodynamic diameter of less than or equal to 2.5 microns due to its inherent physical and chemical properties so that it can enter the alveoli through the respiratory tract for blood gas exchange. Numerous studies have shown that PM2.5 is a serious air pollutant that poses a wide range of health risks, especially for cancer. Bibliometric methods were employed to have comprehensively analyzed the research of PM2.5 in cancer for about a decade in Web of Science to identify hotspots and trends using VOSviewer, CiteSpace, and R. The field has undergone overall growth in the past decade. As research on PM2.5 in health deepens, cancer related to it expanded beyond the respiratory system to the digestive system, urinary system, female gonadal axis, breast cancer and other cancers. Another observation is that research on PM2.5 in cancer has progressed in the mechanisms of deterioration, such as the role of matrix metalloproteinases in cancer. In addition, research on the risks of PM2.5 in combination with polycyclic aromatic hydrocarbons and heavy metals has also emerged. Results showed that there are relatively more studies on PM2.5 in high-latitude countries, which may be due to different national conditions, such as climate and coal combustion. Our research has combed through the progress of PM2.5 in cancer research and provided a supplement for developing pollution prevention ideas with different national conditions in this field.


Air Pollutants , Air Pollution , Neoplasms , Female , Humans , Particulate Matter/analysis , Air Pollution/analysis , Air Pollutants/analysis , Environmental Exposure/analysis , Bibliometrics , Neoplasms/epidemiology
5.
Angew Chem Int Ed Engl ; 62(13): e202214875, 2023 03 20.
Article En | MEDLINE | ID: mdl-36545827

Despite significant effort, a majority of heavy-atom-free photosensitizers have short excitation wavelengths, thereby hampering their biomedical applications. Here, we present a facile approach for developing efficient near-infrared (NIR) heavy-atom-free photosensitizers. Based on a series of thiopyrylium-based NIR-II (1000-1700 nm) dyads, we found that the star dyad HD with a sterically bulky and electron-rich moiety exhibited configuration torsion and significantly enhanced intersystem crossing (ISC) compared to the parent dyad. The electron excitation characteristics of HD changed from local excitation (LE) to charge transfer (CT)-domain, contributing to a ≈6-fold reduction in energy gap (ΔEST ), a ≈10-fold accelerated ISC process, and a ≈31.49-fold elevated reactive oxygen species (ROS) quantum yield. The optimized SP@HD-PEG2K lung-targeting dots enabled real-time NIR-II lung imaging, which precisely guided rapid pulmonary coronavirus inactivation.


Coronavirus Infections , Coronavirus , Humans , Photosensitizing Agents/pharmacology , Thiophenes
6.
Front Cell Infect Microbiol ; 12: 940906, 2022.
Article En | MEDLINE | ID: mdl-35873170

Foot-and-mouth disease virus (FMDV) could cause acute infection in host cells, or they could coexist with host cells to generate persistent infection. In persistent infection, the virus could survive for a long time in the host and could be transmitted between different host cells. In the case of FMDV-persistent infection cell line, there is a remarkable significant cellular heterogeneity in the FMDV-persistent infection cell line due to differences of viral load in the individual cells within the cell line. However, the mechanisms of FMDV-persistent infection are not well understood. It is now generally accepted that multiple factors contribute to the coevolution of viruses and cells during the course of persistent infection. The outcome would influence the development of persistent FMDV infection conjointly, reaching a state of equilibrium ultimately. Therefore, in order to elucidate the mechanism of cellular heterogeneity in FMDV-persistent infection cell line, single-cell sequencing was performed on BHK-Op, and pseudotime trajectory plot was draw through cell cluster. Based on the cell clusters, we predicted the development and progression of the FMDV-persistent infection. It could be well explained by the fact that, in BHK-Op cells, there are a fraction of infected cells and a fraction of virus-exposed but uninfected bystander cells. By further comparing the transcripts in cell clusters, we found that these genes were involved in changes in ribosome biogenesis, cell cycle, and intracellular signaling including the interferon signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway. Through comprehensive cross-tabulation analysis of differential expressed genes in various cluster of cells, we identified a high association of Fos, a downstream transcription factor of the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway, with viral replication during the formation of FMDV-persistent infection. Through the further study of Fos, we found that downregulation of Fos facilitates viral clearance during FMDV-persistent infection. Upregulation of c-Raf, which is the upstream of the MAPK/ERK signaling pathway, could promote FMDV replication through downregulation of Fos. Our research is the first to provide insight into the mechanism of the formation FMDV-persistent infection through single-cell sequencing using persistent infection cell line. Pseudotime trajectory analysis was the first time to apply for FMDV-persistent infection cell line. Our work highlights the detailed overview of the evolution of FMDV-persistent infection. We also analyzed the differential expressed genes in the replication or elimination of FMDV within the host. We found that the MAPK/ERK signaling pathway and its downstream transcription factor Fos play an important role in FMDV-persistent infection.


Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Foot-and-Mouth Disease/genetics , Foot-and-Mouth Disease Virus/genetics , Persistent Infection , Transcription Factors/metabolism , Virus Replication/genetics
7.
Adv Sci (Weinh) ; 9(20): e2106071, 2022 07.
Article En | MEDLINE | ID: mdl-35524635

Dental caries is among the most prevalent dental diseases globally, which arises from the formation of microbial biofilm on teeth. Besides, tooth whitening represents one of the fastest-growing areas of cosmetic dentistry. It will thus be great if tooth biofilm eradication can be combined with tooth whitening. Herein, a highly efficient photodynamic dental therapy strategy is reported for tooth biofilm eradication and tooth discoloration by employing a photosensitizer (DTTPB) with aggregation-induced emission characteristics. DTTPB can efficiently inactivate S. mutans, and inhibit biofilm formation by suppressing the expression of genes associated with extracellular polymeric substance synthesis, bacterial adhesion, and superoxide reduction. Its inhibition performance can be further enhanced through combined treatment with chlorhexidine. Besides, DTTPB exhibits an excellent tooth-discoloration effect on both colored saliva-coated hydroxyapatite and clinical teeth, with short treatment time (less than 1 h), better tooth-whitening performance than 30% hydrogen peroxide, and almost no damage to the teeth. DTTPB also demonstrates excellent biocompatibility with neglectable hemolysis effect on mouse red blood cells and almost no killing effect on mammalian cells, which enables its potential applications for simultaneous tooth biofilm eradication and tooth whitening in clinical dentistry.


Dental Caries , Tooth Bleaching , Tooth Discoloration , Animals , Biofilms , Extracellular Polymeric Substance Matrix , Mammals , Mice , Streptococcus mutans/metabolism , Tooth Discoloration/drug therapy
8.
Front Cell Infect Microbiol ; 12: 882661, 2022.
Article En | MEDLINE | ID: mdl-35586248

We have witnessed the 2-year-long global rampage of COVID-19 caused by the wide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, knowledge about biomarkers of the entire COVID-19 process is limited. Identification of the systemic features of COVID-19 will lead to critical biomarkers and therapeutic targets for early intervention and clinical disease course prediction. Here, we performed a comprehensive analysis of clinical measurements and serum metabolomics in 199 patients with different stages of COVID-19. In particular, our study is the first serum metabolomic analysis of critical rehabilitation patients and critical death patients. We found many differential metabolites in the comparison of metabolomic results between ordinary, severe, and critical patients and uninfected patients. Through the metabolomic results of COVID-19 patients in various stages, and critical rehabilitation patients and critical death patients, we identified a series of differential metabolites as biomarkers, a separate queue and precise distinction, and predicted COVID-19 verification. These differentially expressed metabolites, included 1,2-di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate, propylparaben, 20-hydroxyeicosatetraenoic acid, triethanolamine, chavicol, disialosyl galactosyl globoside, 1-arachidonoylglycerophosphoinositol, and alpha-methylstyrene, all of which have been identified for the first time as biomarkers in COVID-19 progression. These biomarkers are involved in many pathological and physiological pathways of COVID-19, for example, immune responses, platelet degranulation, and metabolism which might result in pathogenesis. Our results showed valuable information about metabolites obviously altered in COVID-19 patients with different stages, which could shed light on the pathogenesis as well as serve as potential therapeutic agents of COVID-19.


COVID-19 , Biomarkers , Humans , Immunity , Metabolomics/methods , SARS-CoV-2
9.
Front Oncol ; 11: 753386, 2021.
Article En | MEDLINE | ID: mdl-34900703

BACKGROUND: Cervical cancer is one of the most common gynecological cancers worldwide. The tumor microenvironment significantly influences the therapeutic response and clinical outcome. However, the complex tumor microenvironment of cervical cancer and the molecular mechanisms underlying chemotherapy resistance are not well studied. This study aimed to comprehensively analyze cells from pretreated and chemoresistant cervical cancer tissues to generate a molecular census of cell populations. METHODS: Biopsy tissues collected from patients with cervical squamous cell carcinoma, cervical adenocarcinoma, and chronic cervicitis were subjected to single-cell RNA sequencing using the 10× Genomics platform. Unsupervised clustering analysis of cells was performed to identify the main cell types, and important cell clusters were reclustered into subpopulations. Gene expression profiles and functional enrichment analysis were used to explore gene expression and functional differences between cell subpopulations in cervicitis and cervical cancer samples and between chemoresistant and chemosensitive samples. RESULTS: A total of 24,371 cells were clustered into nine separate cell types, including immune and non-immune cells. Differentially expressed genes between chemoresistant and chemosensitive patients enriched in the phosphoinositide 3-kinase (PI3K)/AKT pathway were involved in tumor development, progression, and apoptosis, which might lead to chemotherapy resistance. CONCLUSIONS: Our study provides a comprehensive overview of the cancer microenvironment landscape and characterizes its gene expression and functional difference in chemotherapy resistance. Consequently, our study deepens the insights into cervical cancer biology through the identification of gene markers for diagnosis, prognosis, and therapy.

10.
Vet Microbiol ; 263: 109247, 2021 Dec.
Article En | MEDLINE | ID: mdl-34649012

Foot-and-mouth disease virus (FMDV) infection can be either persistent or acute in susceptible animals. The mechanisms involved in FMDV replication and clearance during persistent infection remain unclear. To identify host factors that are critical for FMDV replication during persistent infection, we used RNA-seq to compare the transcriptomes of infected (BHK-Op) cells and bystander (BHK-VEC) cells, which are exposed to FMDV but not infected. In total, 1917 genes were differentially expressed between BHK-Op cells and BHK-VEC cells, which were involved in ribosome biogenesis, cell cycle, and dilated cardiomyopathy. We further identified host genes potentially involved in viral clearance during persistent FMDV infection by comprehensive crossover analysis of differentially expressed genes in ancestral host cells, evolved infected host cells, and evolved bystander cells, which are resistant to infection by wild-type FMDV and FMDV-Op that co-evolved with host cells during persistent infection. Among the identified genes were Cav1 and Ccnd1. Subsequent experiments showed that knockdown of Cav1 and Ccnd1 in host cells significantly promoted and inhibited FMDV replication, respectively, confirming that the overexpression of Cav1 and the downregulation of Ccnd1 contribute to virus clearance during persistent FMDV infection. In addition, we found that BHK-Op cells contained mixtures of multiple genotypes of FMDV viruses, shedding light on the diversity of FMDV genotypes during persistent infection. Our findings provide a detailed overview of the responses of infected cells and bystander cells to persistent FMDV infection.


Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Host Microbial Interactions , Animals , Cell Line , Foot-and-Mouth Disease/genetics , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , High-Throughput Nucleotide Sequencing/veterinary , Virus Replication
11.
Small ; 17(51): e2102841, 2021 12.
Article En | MEDLINE | ID: mdl-34672086

Worldwide, countless deaths have been caused by the coronavirus disease 2019. In addition to the virus variants, an increasing number of fatal fungal infections have been reported, which further exacerbates the scenario. Therefore, the development of porous surfaces with both antiviral and antimicrobial capacities is of urgent need. Here, a cost-effective, nontoxic, and metal-free strategy is reported for the surface engineering of laser-induced graphene (LIG). The authors covalently engineer the surface potential of the LIG from -14 to ≈+35 mV (LIG+ ), enabling both high-efficiency antimicrobial and antiviral performance under mild conditions. Specifically, several candidate microorganisms of different types, including Escherichia coli, Streptomyces tenebrarius, and Candida albicans, are almost completely inactivated after 10-min solar irradiation. LIG+ also exhibits a strong antiviral effect against human coronaviruses: 99% HCoV-OC43 and 100% HCoV-229E inactivation are achieved after 20-min treatment. Such enhancement may also be observed against other types of pathogens that are heat-sensitive and oppositely charged. Besides, the covalent modification strategy alleviates the leaching problem, and the low cytotoxicity of LIG+ makes it advantageous. This study highlights the synergy of surface potential and photothermal effect in the inactivation of pathogens and it provides a direction for designing porous materials for airborne disease removal and water disinfection.


Anti-Infective Agents , COVID-19 , Graphite , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Humans , Lasers , SARS-CoV-2
12.
Small ; 17(30): e2101770, 2021 07.
Article En | MEDLINE | ID: mdl-34190409

COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in global social and economic disruption, putting the world economy to the largest global recession since the Great Depression. To control the spread of COVID-19, cutting off the transmission route is a critical step. In this work, the efficient inactivation of human coronavirus with photodynamic therapy (PDT) by employing photosensitizers with aggregation-induced emission characteristics (DTTPB) is reported. DTTPB is designed to bear a hydrophilic head and two hydrophobic tails, mimicking the structure of phospholipids on biological membranes. DTTPB demonstrates a broad absorption band covering the whole visible light range and high molar absorptivity, as well as excellent reactive oxygen species sensitizing ability, making it an excellent candidate for PDT. Besides, DTTPB can target membrane structure, and bind to the envelope of human coronaviruses. Upon light irradiation, DTTPB demonstrates highly effective antiviral behavior: human coronavirus treated with DTTPB and white-light irradiation can be efficiently inactivated with complete loss of infectivity, as revealed by the significant decrease of virus RNA and proteins in host cells. Thus, DTTPB sensitized PDT can efficiently prevent the infection and the spread of human coronavirus, which provides a new avenue for photodynamic combating of COVID-19.


COVID-19 , Photochemotherapy , Humans , Pandemics , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , SARS-CoV-2
13.
Adv Funct Mater ; 31(24): 2101195, 2021 Jun 09.
Article En | MEDLINE | ID: mdl-34149339

The prevalence of COVID-19 has caused global dysfunction in terms of public health, sustainability, and socio-economy. While vaccination shows potential in containing the spread, the development of surfaces that effectively reduces virus transmission and infectivity is also imperative, especially amid the early stage of the pandemic. However, most virucidal surfaces are operated under harsh conditions, making them impractical or potentially unsafe for long-term use. Here, it is reported that laser-induced graphene (LIG) without any metal additives shows marvelous antiviral capacities for coronavirus. Under low solar irradiation, the virucidal efficacy of the hydrophobic LIG (HLIG) against HCoV-OC43 and HCoV-229E can achieve 97.5% and 95%, respectively. The photothermal effect and the hydrophobicity of the HLIG synergistically contribute to the superior inactivation capacity. The stable antiviral performance of HLIG enables its multiple uses, showing advantages in energy saving and environmental protection. This work discloses a potential method for antiviral applications and has implications for the future development of antiviral materials.

14.
Anal Chim Acta ; 1156: 338359, 2021 Apr 29.
Article En | MEDLINE | ID: mdl-33781459

Ligand fishing for screening of enzyme inhibitors from complex chemical systems using baits prepared by cell surface display of the enzyme is herein demonstrated for the first time. Tyrosine phosphatase 1B (PTP1B), used as a model enzyme in this work, is displayed on the surface of E. coli cells by using ice nucleation protein (INP) as the anchoring motif. Infusion of PTP1B is characterized by western blot, immunofluorescence, proteinase K accessibility, and enzyme activity assays. Surface displayed PTP1B exhibits a maximum of 5.62 ± 0.251 U/OD600 enzymatic activity and a better stability compared with free enzyme. PTP1B displayed cells are used as solid-phase extraction adsorbent in combination with HPLC-MS to screen the inhibitors from the extracts of Rhodiola rosea, a traditional Chinese medicinal plant. Among many well-known active ingredients only arbutin is fished out with an IC50 value of 20.5 ± 0.873 µM, showing the inhibitor screening is highly selective. Furthermore, the equilibrium dissociation constant (KD) of the complex of arbutin and PTP1B was determined to be 79.6 µM by localized surface plasma resonance (LSPR) assay. The proposed ligand fishing technique using recombinant cells as baits opens a new avenue for screening of active compounds from natural products with accuracy and specificity.


Escherichia coli , Plants, Medicinal , Enzyme Inhibitors/pharmacology , Ligands , Protein Tyrosine Phosphatase, Non-Receptor Type 1
15.
Cell Prolif ; 53(8): e12869, 2020 Aug.
Article En | MEDLINE | ID: mdl-32597573

OBJECTIVES: Cryptococcus heimaeyensis S20 is found in Antarctica and can produce exopolysaccharides (CHEPS). Here, we explore the anti-tumour effects of CHEPS on non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: Cell viability was assessed by CCK8 and colony formation assays. Flow cytometry was used to analyse the cell cycle, cell apoptosis and reactive oxygen species (ROS). Cell autophagy was detected by EGFP-LC3 puncta assay, Lyso-Tracker Red staining and transmission electron microscopy. mRNA and protein levels were analysed by qRT-PCR and Western blot. Related mechanisms were confirmed using appropriate inhibitors or shRNA. In vitro results were further confirmed by a tumour xenograft study. RESULTS: CHEPS inhibited the proliferation of NSCLC cells by inducing S- and G2/M-phase arrest and autophagic cell death, but not apoptosis. CHEPS was less toxic to normal human embryonic lung fibroblasts. CHEPS activated the MAPK pathway in NSCLC cells, and p38 and ERK promoted CHEPS-induced cell death. Further studies showed that p38 and ERK promoted CHEPS-induced NSCLC cell autophagy and ERK promoted CHEPS-induced S- and G2/M-phase arrest. ROS were induced by CHEPS. A ROS scavenger attenuated CHEPS-induced p38 and ERK activation, autophagy and cell death. Finally, CHEPS reduced orthotopic lung tumour growth without organ-related toxicity. CHEPS also induced ROS, activated p38 and ERK, and triggered autophagy in vivo. CONCLUSIONS: CHEPS induces autophagic cell death and S- and G2/M-phase arrest in NSCLC cells via ROS/p38 and ROS/ERK signalling.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cryptococcus/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Autophagic Cell Death/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cryptococcus/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Gene ; 741: 144516, 2020 May 30.
Article En | MEDLINE | ID: mdl-32119914

To study the influence of the PGC-1ß gene on chicken adipocyte proliferation and differentiation, we constructed RNA interference (RNAi) vectors that target the PGC-1ß gene and transfected these vectors into adipocytes. Oil Red O staining and a CCK-8 cell kit were used to determine cell triglyceride accumulation status and cell proliferation after transfection, respectively. The mRNA abundances of PGC-1ß and adipocyte-differentiation-related genes (PPARγ, C/EBPα, SREBP-1c, FAS, and A-FABP) were detected by real-time PCR. The results showed that the mRNA and protein abundances of PGC-1ß in PGC-1ß-shRNA transfected adipocytes were significantly lower than those in the control. Interference decreased cell differentiation, but did not depress the cell proliferation. PGC-1ß interference impeded the triglyceride accumulation, the mRNA expression levels of nuclear receptors PPARγ and SREBP-1c, and fatty acid synthetase (FAS), and both proteins PPARγ and SREBP-1c, and the fatty acids transporting protein A-FABP. Generally, PGC-1ß modulated the cell differentiation and triglyceride accumulation in chicken adipocytes.


Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Proliferation/genetics , Chickens/genetics , Chickens/growth & development , Fatty Acid Synthases/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acids/metabolism , Gene Expression Regulation, Developmental/genetics , PPAR gamma/genetics , RNA, Messenger , Sterol Regulatory Element Binding Protein 1/genetics , Triglycerides/metabolism , fas Receptor/genetics
17.
Virol Sin ; 35(1): 52-63, 2020 Feb.
Article En | MEDLINE | ID: mdl-31512107

Foot-and-mouth disease virus (FMDV) rapidly causes cytopathic effects in susceptible cells. Incomplete viral clearance during the acute infection leads to persistent infection. The relationship between host gene expression and the persistent infection remains unclear. In this study, we analyzed the transcriptome profiles of BHK-21 cells acutely and persistently infected with FMDV to identify differences in gene expression. GO and KEGG enrichment analyses showed that the 8,378 differentially expressed genes were significantly enriched in categories including metabolism, biosynthesis, ribosome function, and endocytosis. In persistently infected BHK-21 cells, ribosome- and translation-related genes were significantly down-regulated. There were more differentially expressed immune-related genes during persistent infection than during acute infection. Two hundred and seventy-four genes were differentially expressed in both acutely and persistently infected BHK-21 cells. Among these genes, heat shock protein family B member 1 (Hspb1) knockdown significantly inhibited FMDV replication. Our research provides a basis for further research to understand the mechanisms of persistent FMDV infection including the genes involved in FMDV replication.


Foot-and-Mouth Disease Virus/genetics , Gene Expression Profiling , Host-Pathogen Interactions , Virus Replication/genetics , Acute Disease , Animals , Cell Line , Cricetinae , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/physiology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Cellular , Kidney/cytology , Kidney/virology , RNA, Viral/genetics
18.
Food Chem ; 305: 125429, 2020 Feb 01.
Article En | MEDLINE | ID: mdl-31505415

A simple and rapid magnetic solid-phase extraction (MSPE) method using PEGylated multi-walled carbon nanotubes magnetic nanoparticles (PEG-MWCNTs-MNP) as absorbents is proposed for isolation and enrichment of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), aflatoxin M1 (AFM1), aflatoxin M2 (AFM2), ochratoxin A (OTA), zearalenone (ZEA), zearalanone (ZAN), α-zeralanol (α-ZAL), ß-zeralanol (ß-ZAL), α-zeralenol (α-ZOL), and ß-zeralenol (ß-ZOL) from liquid milk. Combined with ultra-high performance liquid chromatography Q-Exactive high resolution mass spectrometry, simultaneous qualification of these mycotoxins was achieved with sensitivity and specificity. The proposed method showed a good linearity (R2 ≥ 0.995), high sensitivity (limit of detection in the range of 0.005-0.050 µg/kg and limit of quantification in the range of 0.015-0.150 µg/kg), adequate recovery (81.8-106.4%), and good repeatability (intra-day precision in the range of 2.1-8.5% and inter-day precision in the range of 3.9-11.7%). It has been successfully applied to the determination of 13 mycotoxins in real liquid milk samples.


Chromatography, High Pressure Liquid/methods , Milk/chemistry , Mycotoxins/analysis , Solid Phase Extraction/methods , Aflatoxins/analysis , Animals , Magnetics , Nanotubes, Carbon , Ochratoxins/analysis , Sensitivity and Specificity , Zearalenone/analysis
19.
Article En | MEDLINE | ID: mdl-31791942

Echinocandin resistance in Candida is a great concern, as the echinocandin drugs are recommended as first-line therapy for patients with invasive candidiasis. However, therapeutic efforts to thwart echinocandin resistance have been hampered by a lack of fungal specific drug targets. Here, we show that deleting CDC43, the ß subunit of geranylgeranyltransferase type I (GGTase I), confers hypersensitivity to echinocandins, which renders GGTase I a tractable target in combatting echinocandin resistance. The membrane localization of Rho1, which is critical for (1,3)-ß-d-glucan synthase Fks1 activation, is disrupted in the cdc43 mutant, resulting in decreased amounts of glucans in the cell wall, thereby exacerbating the cell wall stress upon caspofungin addition. Guided by this insight, we found that selective chemical inhibition of GGTase I by L-269289 potentiates echinocandin activity and renders echinocandin-resistant Candida albicans responsive to treatment in vitro and in animal models for disseminated infection. Furthermore, L-269289 and echinocandins also act in a synergistic manner for the treatment of Candida tropicalis and Candida parapsilosis Importantly, deletion of CDC43 is lethal in Candida glabrata L-269289 is active on its own to kill C. glabrata, and its fungicidal activity is enhanced when combined with caspofungin. Thus, targeting GGTase I has therapeutic potential to address the clinical challenge of echinocandin-resistant candidiasis.


Alkyl and Aryl Transferases/antagonists & inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candidiasis, Invasive/drug therapy , Caspofungin/pharmacology , Echinocandins/pharmacology , Piperazines/pharmacology , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Animals , Candida/enzymology , Candida/genetics , Candida albicans/drug effects , Candida albicans/enzymology , Candida albicans/genetics , Candida glabrata/drug effects , Candida glabrata/enzymology , Candida glabrata/genetics , Candida parapsilosis/drug effects , Candida parapsilosis/enzymology , Candida parapsilosis/genetics , Candidiasis, Invasive/microbiology , Drug Resistance, Fungal , Drug Synergism , Female , Humans , Mice , Mice, Inbred BALB C , Piperazines/chemistry , Sequence Deletion
20.
mBio ; 10(1)2019 01 15.
Article En | MEDLINE | ID: mdl-30647154

Candida albicans is the most common cause of invasive fungal infections in humans. Its ability to sense and adapt to changing carbon dioxide levels is crucial for its pathogenesis. Carbon dioxide promotes hyphal development. The hypha-specific transcription factor Ume6 is rapidly degraded in air, but is stable under physiological CO2 and hypoxia to sustain hyphal elongation. Here, we show that Ume6 stability is regulated by two parallel E3 ubiquitin ligases, SCFGrr1 and Ubr1, in response to CO2 and O2, respectively. To uncover the CO2 signaling pathway that regulates Ume6 stability, we performed genetic screens for mutants unable to respond to CO2 for sustained filamentation. We find that the type 2C protein phosphatase Ptc2 is specifically required for CO2-induced stabilization of Ume6 and hyphal elongation. In contrast, the cyclin-dependent kinase Ssn3 is found to be required for Ume6 phosphorylation and degradation in atmospheric CO2 Furthermore, we find that Ssn3 is dephosphorylated in 5% CO2 in a Ptc2-dependent manner, whereas deletion of PTC2 has no effect on Ssn3 phosphorylation in air. Our study uncovers the Ptc2-Ssn3 axis as a new CO2 signaling pathway that controls hyphal elongation by regulating Ume6 stability in C. albicansIMPORTANCE The capacity to sense and adapt to changing carbon dioxide levels is crucial for all organisms. In fungi, CO2 is a key determinant involved in fundamental biological processes, including growth, morphology, and virulence. In the pathogenic fungus Candida albicans, high CO2 is directly sensed by adenylyl cyclase to promote hyphal growth. However, little is known about the mechanism by which hyphal development is maintained in response to physiological levels of CO2 Here we report that a signal transduction system mediated by a phosphatase-kinase pair controls CO2-responsive Ume6 phosphorylation and stability that in turn dictate hyphal elongation. Our results unravel a new regulatory mechanism of CO2 signaling in fungi.


Candida albicans/growth & development , Carbon Dioxide/metabolism , Cyclin-Dependent Kinase 8/metabolism , Hyphae/growth & development , Protein Phosphatase 2C/metabolism , Repressor Proteins/metabolism , Signal Transduction , Candida albicans/drug effects , Candida albicans/genetics , Gene Expression Regulation, Fungal , Hyphae/drug effects , Phosphorylation , Protein Processing, Post-Translational , Proteolysis
...